Tag Archives: Virent

Coca-Cola Collaborates With Liquid Light to Accelerate Its CO2 to MEG Process

Liquid Light recently signed a technology development agreement with The Coca-Cola Company to accelerate the progress of its CO2 to mono-ethylene glycol (MEG) conversion technology. This news follows Coca-Cola’s recent unveiling of its first PET plastic bottle made completely from plant materials.

With this announcement, Liquid Light joins Virent, Gevo, and Avantium on the Coca-Cola PlantBottle project. Gevo focuses on developing bio-PX as a precursor to bio-TPA, Avantium looks into FDCA for polyethylene furanoate (PEF), while Virent focuses on developing an alternative route to bio-PX for the (client registration required) production of bio-PET. Liquid Light aims to produce ethylene glycol from CO2, which would further augment Coca-Cola’s existing PlantBottle Packaging Program when the Liquid Light technology converts biogenic carbon sources.

But if Coca-Cola can already produce 100% bio-based PET, why did the company just sign this agreement with Liquid Light? Now that Coca-Cola has achieved its 100% bio-based PlantBottle, the company wants to implement the exclusive use of this bottle by 2020. However, it will not be able to do this on a global commercial scale while remaining cost competitive with (client registration required) petroleum derived alternatives. This is where Liquid light comes into play. The company claims its route to be a lower cost alternative to the ethanol to MEG route used to produce the bio-MEG in Coca-Cola’s PlantBottles today.

When we spoke with the company last year, we were told of a hypothetical model where a Liquid Light MEG facility would be an alternative to the Quest CCS Project, which plans to bury 1 million tons of CO2 per year underground. In this scenario, a Liquid Light facility would use the 1 million tons per year of CO2 to produce around 625,000 tons per year of ethylene glycol. Assuming a cost of carbon dioxide of $77/ton and a 10% discount rate, the company projected operational expenses of $402 million per year, which translates to approximately $640 per MT of MEG. Current selling prices for commercial volumes of MEG range from roughly $800 per MT to $1,000 per MT, thereby potentially leaving enough margin to compete on price parity with incumbents. If Liquid Light is able to achieve its cost claims, this gives Coca-Cola the ability to kill two birds with one stone: expanding its options for sourcing bio-MEG, while also obtaining it at a price on par, or even lower, than incumbents.

With its recent flurry of bio-PET announcements, Coca-Cola is becoming a leader in developing and implementing bio-based alternatives into its product portfolio; however, we are seeing other companies follow suit. For instance, (client registration required) LEGO’s recent sustainability announcement emphasizes the vast amounts of time and money companies are willing to invest in order to go green. Announcements like this emphasize the growing opportunities for companies looking to address sustainability concerns in existing value chains.

What Are the Major Alternative Fuels Interests of Oil Majors?

As the alternative fuels industry diversifies and scales up, financing is always the key to technology commercialization. While several sources of financing drive the whole industry forward, we investigate the trends of corporate financing from oil majors, based on a non-exhaustive database of over 1,000 deals and partnership engagements from 2000 through September 2014. With the focus on financial engagement, we only look into the private placement, equity stake, joint venture (JV), mergers and acquisitions (M&A), other than general partnerships. For example, we counted BP’s bioethanol JV plant with British Sugar, but we didn’t include BP’s research work with the Energy Biosciences Institute. We then drew a graph based on the investment counts (rather than invested companies) of the seven most activate oil majors in our database, namely, Shell, BP, Total, Valero, Chevron, Petrobras and Reliance. Particularly, repeated investment activities on the same company would be counted as multiple. We further sorted the investment by six core technology families – algae, biomass to sugar, catalysis, crop development, fermentation (and enzyme development), and pyrolysis/gasification.


From our analysis of their activities in the alternative fuels industry, we find that:

  • BP leads the investment frequency in a variety of technology families. Particularly, it has a strong focus on the crop development by transgenics and breeding, with repeated investments made to Chromatin (client registration required) and Mendel Biotechnology (client registration required). It also continues investing on biomass to sugar technology including to handle cellulosic biomass, such as REAC Fuel (client registration required).
  • Shell is not a fan of crop development, but has a wide coverage on other technologies. For example, it invested on multiple rounds and formed a JV with Iogen (client registration required), but terminated the JV in 2012. Then the oil giant formed partnerships and JVs with Codexis (client registration required), Cosan, and Novozymes to continue its interests in cellulosic ethanol. Shell shifted its shares in Codexis to Raizen, its ethanol JV with Cosan and “formed the largest sugar and ethanol company in the world”. It also partnered with Virent (client registration required) on the biomass catalytic conversion to produce renewable gasoline, and Cellana (HR BioPetroleum) on algae biofuel. Moreover, Shell Foundation also funded Husk Power System (client registration required) on gasification development.
  • Total and Chevron are the most active corporate investors in the fermentation domain. Total did the private placement on the IPO of Gevo (client registration required) and formed a JV with Amyris (client registration required) with both focusing on corn and sugar cane feedstocks. Gevo is focusing on isobutanol fermentation and Amyris is doing the bioconversion to produce isoprenoids. On the other hand, Chevron invested in Codexis (client registration required) and LS9 (client registration required) with its concentration on the genetic engineering, while LS9 was acquired by Renewable Energy Group in early 2014 (client registration required). All invested companies by these two giants are diversifying their revenue streams with drop-in fuels, specialty chemicals, and/or drugs in downstream markets.
  • Velero has a strong focus on the drop-in fuel production either by bioconversion or catalysis. Valero owns 10 facilities in the U.S. with over 1,000 MGY corn ethanol capacity. However, it is also interested in cellulosic ethanol with its funding of Qteros, Mascoma Corporation (client registration required), and Enerkem (client registration required). Additionally, the focus on waste feedstock can be reflected by its investments in the ill-fated Terrabon (client registration required), which was focused on wet waste-to-gasoline.
  • Investments of oil majors in developing countries are more constrained by local resources and policy drivers. For example, Reliance is investing the algae technology developers such as Algae.Tec (client registration required), Aurora Algae (client registration required), and Algenol Biofuels. Petrobras is concerned with fuel production from sugar cane or bagasse, such as BTG-BTL (client registration required) and BIOecon, which combine the feedstock advantage and local policy driver. Other oil majors not listed in the graph, such as Chinese oil majors, Sinopec and PetroChina (CNPC), are shifting their focuses from food ethanol to cellulosic ethanol and coal-to-ethanol, which is responding to the call of the Chinese government to discourage the food ethanol industry (see the report “Fueling China’s Vehicle Market with Advanced and Coal-based Ethanol” — client registration required.)
  • Less active oil majors in this space include ExxonMobil and ConocoPhillips. They only made sporadic investments – such as Synthetic Genomics (client registration required) by ExxonMobil and ADM by ConocoPhilips. Additionally, ExxonMobil mobile recently teamed up with Iowa State University to research pyrolysis.

Industry Giants Join Forces to Fast Track the Commercialization of 100% Bio-Based PET

Last week, industry giants Coca-Cola, Ford Motor, Heinz, Nike, and Proctor & Gamble formed a partnership agreement designed to integrate 100% plant-based polyethylene terepthalate (PET) into their product lines at commercial scale. This news rides on the coattails of Coca-Cola’s announcement to partner with Virent, Gevo (Client registration required.), and Avantium (Client registration required.) to accelerate development of their current 30% plant-based monoethylene glycol (MEG) PlantBottle (Client registration required.). To date, purely bio-based PET technologies exist. In fact, there are many plant-based routes to terepthalic acid (TPA), which can then be converted to PET. These include both fermentation and catalytic processes that are currently too expensive at commercial scale.

Coca-Cola’s goal is to convert all petroleum-based PET products to plant-based PET, which represents 52% of the total packaging within the company. Heinz licensed the MEG PlantBottle technology from Coca-Cola, and hopes to achieve similar goals. Furthermore, Ford shifted from using petroleum-based PET to currently use 25% soy-based polyols for seat cushions, recycled resins for underbody systems, post-industrial recycled yarns for seat fabrics, and repurposed nylon to make cylinder head covers in its bio-based portfolio. Considered a drop-in solution, bio-based PET replicates the mechanical and chemical properties of petroleum-based PET. Therefore, the 100% plant-based PET can potentially be used for all of these end products.

This consortium acts as a catalyst to grow the bio-based PET industry to produce plastic bottles, clothing, shoes, automotive carpets, and other furnishings, and essentially any product made from traditional PET. These industry behemoths will inevitably commercialize the technology due to their current R&D partnerships, access to suppliers, collaborations with universities, and extensive monetary resources. Furthermore, this will enhance the strength of the bio-based materials and chemicals industry by promoting collaboration along the entire supply chain, especially as the rate of forged partnerships is expected to slow in 2012. (See the report “Solving the Bio-Based Chemicals Partnership Puzzle.” Client registration required.)

Rating Thermochemical Start-ups on the Lux Innovation Grid

Small technology startups are driving a wave of new bio-based chemicals and materials technologies, and their growth is catalyzing the biggest change the global chemicals industry has seen in decades. In a recent report (client registration required), Lux Research applied its Lux Innovation Grid to rate 106 startups competing in seven technology areas, ranging from renewable feedstocks like algae, GM crops, and waste gases, to downstream processing in pyrolysis, gasification, and synthetic biology.

This week’s graphic displays the likely winners and losers who are fielding thermochemical processes, which promise the bounty of bioprocessing without the need for engineered microbugs. Unlike bioprocessing, thermochemical technologies create compounds via more scalable catalytic and conventional chemical methods. The Dominant quadrant’s five innovators make the field one of the strongest in the bio-based chemicals and materials space.

Among the top innovators is Elevance, which uses metathesis to convert plant oils into glycerin, esters, and biofuels. Its high Technical score derives from its simple chemical process and capital-light manufacturing, which combine to yield a disruptive process. But Elevance also has ongoing collaborations with Cargill, Materia, Dow Corning, Tetramer Technologies, Stepan, Wilmar International, and others, all of which fueled the company’s $100 million IPO filing.

Also in the Dominant quadrant is Virent, which develops fuels and chemicals from soluble sugars. It rates highly on Business Execution because of its management team’s industrial and scientific backgrounds and investments from Cargill, Honda, and Shell. Moreover, the company has a partnership with HCL Cleantech, which supplies cellulosic sugars. Its technology signifies a unique and effective way to convert sugars to alkanes that may then be catalytically converted to a slew of materials (client registration required).

Both Red Lion Bio-energy and Siluria occupy the High Potential quadrant, but that’s about all the two companies have in common. Red Lion, whose process combines aspects of pyrolysis and gasification to convert biomass to syngas, faces business challenges because its gasification technologies are capital-intensive. Meanwhile, Siluria Technologies has a unique catalyst support technology designed to efficiently convert natural gas (fossil or biogas) to ethylene. While its approach is notable and potentially very valuable, the company is only in its fourth year and has not made much commercial progress yet. It has raised about $17 million in venture funding to date, but it lacks chemical industry connections through management experience or partnerships.

Source: Lux Research report “Assessing Innovator Evolution in Renewable Materials and Chemicals.”

The boom in bio-based materials and chemicals is really a boom in synthetic biology

Venture capitalists (VCs) invested $3.1 billion in bio-based chemicals and materials developers since 2004. As many of those start-ups reach megaton scales and launch IPOs, Lux Research analysts sought to find which technologies venture investors favored. This week’s graphic comes from their just published report (client registration required), in which analysts tracked 177 venture transactions involving 79 companies operating in five technology categories – biocomposites, bioprocessing, thermochemical processes, crop modification, and algae. In short, they found:

Bioprocessing developers brewed up $1.89 billion in 96 deals. Bioprocessing developers – especially synthetic biology companies – landed more than half the total venture capital invested since 2004. Encompassing technologies like fermentation, phage display, natural breeding and synthetic biology, all bioprocessing platforms employ some sort of organism as a “factory” for creating products as diverse as sweeteners and catalyst supports. Intrinsically flexible, these platforms enable the likes of Amyris, Codexis, LS9, and Solazyme to produce multiple products from multiple feedstocks, thus ensuring a relatively low-cost route to high-value compounds and providing a hedge against feedstock and product price volatility.

Thermochemical technologies raked in $577.0 million in 31 deals. Thermochemical processing encompasses technologies like gasification (Enerkem), catalysis (Avantium, Inventure), and acid hydrolysis (HCL Cleantech, BlueFire) that sometimes convert biomass to an intermediate like sugars or syngas, and sometimes go all the way to an end product. (e.g. Virent’s paraxylene is used in Pepsi’s famed 100% bio-based PET bottle

Crop modification companies harvested $371.7 million in 28 deals. IPOs are less common fates for crop modification companies which, as you may have guessed, modify crops to be more amenable and economical for use in bio-based materials and chemicals. Instead, companies in this category, like Athenix and FuturaGene, usually end up being acquired by the likes of Syngenta, Monsanto, DowAgro, or Bayer CropScience.

Algae developers saw $190.5 million in 13 deals. Notably, that figure only encompasses start-ups developing algae strains, cultivation systems, and processing equipment for creating industrial chemicals. Representative developers include Bio Architecture Lab, a macroalgae developer, and Israel’s Rosetta Green, which had raised $1.5 million in venture funds, but more recently brought in almost $6 million in an IPO on the Tel Aviv TASE. Excluded from this category are companies primarily developing fuels (which we cover in our Alternative Fuels Intelligence service), and companies like Solazyme and Green Pacific Biologicals that use algae for fermentation (and, thus, are categorized in bioprocessing, above).

Biocomposites developers brought in $108.9 million in a mere nine transactions. This category includes bioplastic blends, some starch plastics, and bio-based foams, from the likes of Cereplast, EcoSynthetix, Ecovative Design, and Entropy Resins. Because of the relatively simple nature of these technologies, VCs often don’t see them as investment opportunities – forcing companies like SoyWorks and Biop Biopolymer to find other sources of funding.

Source: Lux Research report “Seeding Investment in the Next Crop of Bio-Based Materials and Chemicals.”

Investors pump $930 million into alternative fuel technologies

Graphic of the WeekIn 2010, investors gave $930 million to alternative fuels start-ups, a four-year low. However, investment climbed dramatically to an all-time high of $698 million for companies with flexible technologies that can use a variety of feedstocks or generate diverse end products. Flexibility increases a technology’s addressable market, provides secondary revenue streams, and unshackles technologies from price volatility.

Specifically, synthetic biology start-ups – which develop novel organisms ranging from Escherichia coli (E. coli) to yeast – have attracted the most funding since 2004: $1.84 billion or 28.4% of the total. Investment dipped just 16.7% from $436.5 million in 2007 to $358.3 million in 2009, and investments actually peaked last year at $447.0 million, representing 25% growth over 2009. Driving this growth were companies with novel and flexible technologies to make both fuels and chemicals, such as Solazyme ($60 million Series D), LanzaTech ($18 million Series B), and LS9 ($30 million Series D). Since those 2010 transactions, Solazyme and several other venture-backed companies in the space have launched successful IPOs (Client registration required).

But investors shouldn’t ignore other flexible technologies. Investment in thermochemical processes (pyrolysis, gasification, torrefaction) did not trail far behind synbio. Technologies in this category account for 43.3% of the funding thus far in 2011. Representative companies include Virent and Elevance, whose catalytic processes produce a range of fuels, rubbers, oils, and plastics. Technologies capable of using agricultural, solid, or gaseous waste, such as LanzaTech, GlycosBio, and Ignite Energy, present further opportunities for investors.