Tag Archives: SK Innovation

What’s Happened in the First Half of 2017 in Energy Storage: Meta-Analysis of More Than 300 News Events Across the Industry

Using our News Commentary feature (client registration required), Lux Research analysts have been tracking the energy storage space with unprecedented detail, covering more than 300 chosen individual developments during the past half year. These innovation-related events span from partnerships and investments to new research and new factories, and include information about the companies involved and our own takes on the developments. While this set of coverage is not meant to include every single development, it does capture much of what Lux analysts think is worth considering. The full dataset is available to Lux members to explore here, by clicking the News tab’s Energy Storage filter (client registration required), which includes interactive versions of the visualizations shown below. To help extract insights from this wealth of data, in this summary we analyze the trends that have emerged out of this in-depth coverage of how the energy storage landscape looks like in 2017 thus far, using the following heat map:

Continue reading

Butadiene Scarcity Opens up Opportunities for Bio- and Methane-based Processes

Butadiene is an important petrochemical with a market size of more than $40 billion, and around 60% of butadiene goes into synthetic rubber production. The relatively recent exploitation of shale gas has resulted in butadiene scarcity, since natural gas chemical feedstocks have fewer C4 hydrocarbons than oil feedstocks used in petrochemical production. This shortage translates into the continuous climb in the price of butadiene, which at $0.70/lb is currently more than 10% to 30% higher than it was last year.

The supply gap, which is projected to widen as shale gas exploitation intensifies, creates an incentive for technology developers to engineer novel butadiene production strategies that take in either biomass or natural gas as feedstock. For example, in June, BASF and Linde announced a collaboration for the development of on-purpose production of butadiene from butane. A similar announcement from Honeywell UOP came shortly thereafter, where the company licenses TPC Group’s OXO-D technology to convert butane to butadiene.

In addition to these more recent announcements, we have been closely following the progress of start-ups focusing on bio-based butadiene. Global Bioenergies, in partnership with Synthos, is pursuing a direct route to isobutadiene through genetically modified Escherichia coli. LanzaTech has ongoing projects with Invista and SK Innovation to produce butadiene either from LanzaTech’s carbon monoxide based 2,3-butanediol or through direct fermentation. Genomatica is collaborating with Versalis and Braskem to develop butadiene from renewable feedstocks (client registration required). Additionally, Braskem recently opened a research and development (R&D) center where one of its R&D projects is on renewable butadiene. Last year, Cobalt Technologies announced partnership agreements with two undisclosed Asian companies for the development of a biomass-to-butadiene solution, through Cobalt’s n-butanol production technology.

Chemical companies are not the only players in field of renewable butadiene, tire manufacturers looking to hedge against future feedstock scarcity are also investing in the field. For example, Michelin is collaborating with Axens and Tereos to convert biomass to butadiene.

The projected scarcity of butadiene for synthetic rubber production has created an incentive for tire and synthetic rubber productions to explore various alternative rubber production methods. Although renewable butadiene production receives most of the limelight, some companies are looking at other strategies, including exploring the use of natural rubber substitute (guayule or rice husk) and creating a newer version of synthetic rubber from bio-isoprene (client registration required).

In addition to the continued tightening of naphtha-derived butadiene supply, the demand growth for tires and polymers from emerging economies and the volatility of the natural rubber market will continue to drive efforts in renewable butadiene. At this stage, most of the leading developers in the field are already in developmental partnerships. To hedge against the projected butadiene scarcity, companies should secure supply agreements or collaborate with earlier-stage technology developers that have not yet secured exclusive partnerships.