Tag Archives: MatterFab

3D Printing Start-up Matterfab’s Claims of Performance Have Little Strength, but it May Forge Opportunity With Open Materials Platform

3D printing start-up MatterFab recently announced it can deliver metal printing systems of comparable quality to those of established players like EOS (client registration required) at one tenth the price. It plans to complete an initial round of performance tests in the coming months and ship test models to partners early next year. To further dig into these bold claims, we caught up with CEO Matthew Burris, who told us that MatterFab’s printer is a conventional selective laser sintering (SLS) platform with little technical differentiation from current printers; it can currently print on stainless steel. Matt said significant cost reduction is achievable by altering the design of the printer. He referenced the window into the print area as one example; this part was costly so he replaced it with a cheap webcam. In addition to these changes to peripheral systems, Matterfab will use lower-powered lasers, which Matt claimed could produce printed parts of equivalent quality to available systems. He also told us that the company will adopt an open materials model.

MatterFab’s claims of equivalent performance at a vastly lower price are hard to believe, especially considering the maturity of established SLS printer providers (see the report “Building the Future: Assessing 3D Printing’s Opportunities and Challenges” — client registration required). While cutting corners on peripheral systems will save it some money, the main cost of 3D printers is in the lasers, powder handling systems, and mechanics that move the laser and print tray. If MatterFab uses a cheaper, lower powered laser it will have to move more slowly over the metal powder to ensure that it is fully melted. This will in turn slow down build time and cause more widespread heating of the printed part, reducing accuracy and subjecting the part to multiple heating and cooling cycles, likely resulting in decreased part strength. Without a clear technical innovation, it’s uncertain how MatterFab will meet its performance and price goals. Until performance data becomes available, MatterFab’s claims should be regarded with skepticism.

However, this does not mean there is no potential market for the company. The tight controls on printable materials enforced by major industry players like EOS and 3D Systems (client registration required) create opportunity for emerging innovators to develop a wider selection of products and properties (see the report “How 3D Printing Adds Up: Emerging Materials, Processes, Applications, and Business Models” — client registration required). For instance, EOS only offers 12 metal print materials, a pittance compared to the thousands of commercially available alloys. This is a boon for MatterFab and its open materials platform. Instead of attempting to beat larger and more mature incumbents on price and quality, MatterFab should focus on customers who wish to print specialty alloys (client registration required) that can’t be printed today. This strategy has proven successful for electron beam melting (EBM) printer producer Arcam (client registration required), which works with clients to evaluate third-party materials for use in its printers.