Tag Archives: EOS

Sizing up Selective Laser Sintering System Providers

Selective laser sintering is a powder bed printing technology that raster’s a laser over a bed of very fine plastic powder and sinters it to produce individual part layers. To see what this long-standing technology’s outlook is, our analysts have taken a comparative look at the SLS system provider and materials landscape. Continue reading

Breaking Down HP’s Announcement on 3D Printing Reveals Paper-thin Claims

Hewlett-Packard (HP) recently released a white paper detailing its planned 3D printer. HP’s “Multi Jet Fusion” system claims a tenfold increase in build speed, improved part quality with controllable properties like color, elasticity and strength, and better “economics” than current offerings. The printer functions by inkjet printing binder into a bed of powdered thermoplastic, though the company claimed this technology could ultimately print metals and ceramics. HP’s accompanying press release said the printers would be available in 2016.

Along with its decision to split into two companies, this move into the 3D printing space would appear geared at turning around the company’s financial fortunes and reversing a declining culture of innovation. However, while others have focused on offering investment advice or lauding the move as primed to radically change manufacturing, a closer reading of the white paper reveals several holes in HP’s performance claims, in several key areas:

  • Speed and part precision. HP is not the first to try to improve printer throughput. Technologies like Loughborough University’s High Speed Sintering (HSS) printer have achieved similar tenfold improvement in print speed over selective laser sintering (SLS) printers. However, the tradeoff is part precision, as printed parts require post-processing to achieve the same surface smoothness as SLS parts. HP’s printer will likely also require post-processing to achieve similar results.
  • Part properties. HP’s white paper contains a laundry list of impressive properties that the new printer will be able to control: surface roughness, friction, opacity, color, and electrical and thermal conductivity. There is a catch, however: Reading the footnotes reveals that these are just possibilities, and not all have been selected for inclusion in the first generation of printers. At this time, HP has only demonstrated parts with multiple colors. Until more information is revealed, it seems that color printing is the only capability that will make it into the 2016 model printers.
  • Economics. Again, reading the footnotes proves to be critical to understanding HP’s claims. HP compares its offerings to SLS printers like those of 3D Systems (client registration required) or EOS (client registration required), that range in price from $200,000 (polyamide printer) to $1.2 million (polyketone printer). Given that it has chosen SLS as its benchmark, HP’s printers could cost into the low hundreds of thousands of dollars and still be considered “economical.” Meanwhile, companies like Z Corp (now owned by 3D Systems) offer printers cheaper than $40,000, which would make HP’s look far less favorable in comparison. What’s more, HP gives no estimate of material or binder costs, a critical input for total cost of ownership.

Despite these significant questions regarding the value proposition of the Multi Jet Fusion, HP’s entry into the 3D printing space remains significant as it is sure to attract attention and catalyze innovation and investment activity industry-wide. The giant company’s vast network and distribution channels could help accelerate growth of the entire space. Additionally, HP’s core technology is amenable to multi-material printing, which if properly developed could significantly expand the possibilities of printed objects.

HP’s statement that it “is inviting creative collaboration in materials for 3D printing” is on the surface encouraging, as it appears to eschew the closed materials business models employed by today’s leading printer companies that thwart 3D printable material development (see the report “How 3D Printing Adds Up: Emerging Materials, Processes, Applications, and Business Models” — client registration required). However, HP’s “Frequently Asked Questions” accompaniment reveals that “HP aims to lead the market by developing new 3D print materials, using color, biocompatible, ceramic, metal, and other materials” – implying its invitation of creative collaboration is likely just a euphemism for the shortsighted razor/blade business models already employed by the likes of 3D Systems, Stratasys, and EOS that prioritize next quarter’s profits over innovation and long term growth. HP would be well served focusing on refining its hardware technology and demonstrating concrete improvements on price or performance, and leaving material development to material experts, much like electron beam melting (EBM) pioneer Arcam (client registration required) did to accelerate its commercial traction in aerospace and medical production applications. Until then, HP’s claims of revolutionizing the 3D printing space will remain as flimsy as the paper they are printed on.

3D Printing Start-up Matterfab’s Claims of Performance Have Little Strength, but it May Forge Opportunity With Open Materials Platform

3D printing start-up MatterFab recently announced it can deliver metal printing systems of comparable quality to those of established players like EOS (client registration required) at one tenth the price. It plans to complete an initial round of performance tests in the coming months and ship test models to partners early next year. To further dig into these bold claims, we caught up with CEO Matthew Burris, who told us that MatterFab’s printer is a conventional selective laser sintering (SLS) platform with little technical differentiation from current printers; it can currently print on stainless steel. Matt said significant cost reduction is achievable by altering the design of the printer. He referenced the window into the print area as one example; this part was costly so he replaced it with a cheap webcam. In addition to these changes to peripheral systems, Matterfab will use lower-powered lasers, which Matt claimed could produce printed parts of equivalent quality to available systems. He also told us that the company will adopt an open materials model.

MatterFab’s claims of equivalent performance at a vastly lower price are hard to believe, especially considering the maturity of established SLS printer providers (see the report “Building the Future: Assessing 3D Printing’s Opportunities and Challenges” — client registration required). While cutting corners on peripheral systems will save it some money, the main cost of 3D printers is in the lasers, powder handling systems, and mechanics that move the laser and print tray. If MatterFab uses a cheaper, lower powered laser it will have to move more slowly over the metal powder to ensure that it is fully melted. This will in turn slow down build time and cause more widespread heating of the printed part, reducing accuracy and subjecting the part to multiple heating and cooling cycles, likely resulting in decreased part strength. Without a clear technical innovation, it’s uncertain how MatterFab will meet its performance and price goals. Until performance data becomes available, MatterFab’s claims should be regarded with skepticism.

However, this does not mean there is no potential market for the company. The tight controls on printable materials enforced by major industry players like EOS and 3D Systems (client registration required) create opportunity for emerging innovators to develop a wider selection of products and properties (see the report “How 3D Printing Adds Up: Emerging Materials, Processes, Applications, and Business Models” — client registration required). For instance, EOS only offers 12 metal print materials, a pittance compared to the thousands of commercially available alloys. This is a boon for MatterFab and its open materials platform. Instead of attempting to beat larger and more mature incumbents on price and quality, MatterFab should focus on customers who wish to print specialty alloys (client registration required) that can’t be printed today. This strategy has proven successful for electron beam melting (EBM) printer producer Arcam (client registration required), which works with clients to evaluate third-party materials for use in its printers.