Tag Archives: EnvisionTEC

Dental 3D Printing Driven by Cost, Accuracy, and Material Selection

The dental industry requires easy and fast production of highly customized parts. As 3D printing is well-suited for fast production of customized parts, easy-to-use, highly accurate, and cost effective 3D printing solutions are becoming increasingly preferred over subtractive CNC milling-based methods. Combined hardware, materials, and software advancements are driving adoption, and the solutions allow for direct printing of dental appliances including restorations, surgical (drill) guides, night guards, splints, custom impression trays, and denture bases as well as dental models for investment casting of aforesaid appliances and other appliances, such as aligners. This insight summarizes the emerging technologies that drive this adoption and those that are likely to advance dental manufacturing in the near and long term.

In 2016, 3D printer sales to the dental industry grew by 75% compared to the previous year. One of the main reasons for this growth is the emergence of desktop professional 3D printers. These printers fill the gap between costly industrial metal and polymer printers (starting at $100,000) and low cost consumer desktop printers (below $3,000). Desktop professional 3D printers offer high accuracy, precision, and often high speed at a competitive price from $3,000 to $15,000. These combined qualities make these printers suitable for dentistry where rapid production of customized parts is necessary. Companies leading the development and sales of desktop professional 3D printers for dental applications including Formlabs, DWS, and EnvisionTEC. Formlabs has developed a desktop stereolithography (SLA) 3D printer called the Form 2 that enables direct or indirect production of dental models and appliances using photopolymer resins. The Form 2’s main differentiator is the ability to print parts with high accuracy and precision at a lower upfront cost compared to industrial printers. Similarly, DWS has also developed an SLA 3D printer, called DFAB, which allows for direct printing of dental restorations with a comparably low 20 minute post-processing time. Given the benefits of these printers compared to industrial printers, the sales of these printers are likely to continue growing.

In addition to the advances at the 3D printer level, there are more biocompatible printable materials now suitable for long-term oral use. Although biocompatible metals, such as cobalt chrome and its alloys provided by EOS and 3D Systems, have been available for more than a decade, the availability of biocompatible photopolymer resins were limited until recently. There are now more resins that can offer aesthetic and functional advantages over metals, too. For example, Formlabs, EnvisionTEC, and DWS have resins suited for direct or indirect printing of dental applications, and some of these resins come in multiple shades for mixing to create a more natural color. These resins are costly (starting from $250/kg); however, cost per application is reasonable because it is possible to 3D-print tens of dental models or appliances using 1 kilogram of resin. Furthermore, despite increased resin availability with different mechanical properties and color options, they still lack variety – in terms of strength and abrasion resistance – to suit different use cases. Going forward, there is a need for more biocompatible resins appropriate for printing dental appliances, and this need creates further opportunities for material developers. Thus, clients producing materials should consider engaging with 3D printer producers to develop new 3D printable biocompatible resins.

Another big challenge to increase adoption is throughput, and there are other technologies, such as multi-printer systems, that emerged in order to automate higher-volume part production. These systems claim to reduce time and cost for manufacturing tens of parts at the same time while automating part removal and resin-refilling tasks. Although these multi-printer systems do not have wide-spread adoption today, they are likely to influence the dental market in the long term. Currently, there are a number of companies offering multi-printer systems including Stratasys, 3D Systems, AMSYSTEMS Center (TNO), and Massportal. One example developer of such systems for dental applications is Coobx, which offers production line systems composed of eight to twelve in-house developed desktop professional printers. According to the company, their systems are capable of completing the printing cycle for dental models used to make aligners in 30 minutes, and can print up to 80 parts at the same time. Despite promising specifications, only large dental clinics and laboratories can justify the high initial costs of these systems as of now.

Last but not least, dentists increasingly use 3D scanning equipment to produce 3D models directly from 3D scan data. Digital impression solutions already have widespread use in dentistry, and dental labs and clinics that use these solutions are more likely to adopt 3D scanning. As a result, accurate 3D scanners and specific appliance design and optimization software help create better 3D models, and hence help further adoption of 3D printing. As an example, DWS has developed its own software, allowing dental professionals to edit part appearance and design.

Overall, low-cost, highly accurate 3D printers and biocompatible 3D printable materials availability are the key drivers of near-term adoption of dental 3D printing applications. These technological developments go hand-in-hand with design software and 3D scanning advances to provide the industry the tools for fast production of highly customized dental parts.

By: Tugce Uslu