Tag Archives: Addaero Manufacturing

Energy Drives Defensive Innovation in the Steel Industry

In recent years, there has been rapid innovation in the development and processing of structural metals, particularly for high-performance alloys. Lux has covered high-end metals innovation extensively, much of which has been driven by advances in 3D printing, simulation and modeling software, materials informatics, and novel approaches to alloy design, such as high-entropy alloys. As a result, the development, production, and processing of high-performance metals continues to get cheaper as quality improves. Continue reading

Norsk Titanium Receives Production Part Order from Boeing, Highlighting a Bright Future in Aerospace Metal Additive Manufacturing

Norsk Titanium (client registration required) recently announced that Boeing has ordered titanium structural components for the 787 made using Norsk’s additive manufacturing process. Norsk received FAA approval for the components in question in February 2017 after more than a year of testing by Boeing. Its printing process, Rapid Plasma Deposition (RPD), combines additive and subtractive steps: first building up a part using plasma arc deposition from a wire feedstock, then CNC machining the part to the final specifications. Compared to conventional titanium manufacturing, the RPD process can reduce cost by up to 70%, primarily from its comparatively low buy-to-fly ratio of 1.5:1. At the same time, compared to powder-based 3D printing processes (which can sometimes achieve even lower 1.1:1 buy-to-fly ratios), RPD is faster and can produce larger parts, up to 2 m across. Other wire-based metal 3D printers, such as those from Sciaky, achieve similar speed and part size to RPD but do not incorporate subtractive machining in a single production tool. To meet the increased production demand from Boeing’s purchase order, Norsk plans to move production from Norway to a facility in Plattsburgh, NY, which will have nine printers operating by the end of 2017. Ultimately, the company claims it will be producing several tons of titanium components for each 787, which would reduce the Boeing’s material cost per plane by as much as $2 million to $3 million. Continue reading